COLLISION OF RANDOM WALKS FOR DISCRETE LOGARITHM

University of Massachusetts

One-way function: Discrete Exponential and Logarithm

Easy

• Compute $h = g^x$ for given g, h, x

Hard

- Solve $h = g^x$ for given g, h
- Brute force: O(N) steps

Encryption

- Encrypt: Require g, x.
- Decrypt: Require discrete log.

How hard is Discrete Logarithm?

- □ Upper bound: Certainly $N = |\langle g \rangle|$ steps suffice.
- □ Shoup ('97): $\Omega(\sqrt{N})$ for generic algorithm.
- □ Deterministic Square-root: $O(\sqrt{N})$ space Shanks baby step giant step.

Randomized Square-root methods: O(1) space
 Pollard's Rho, Pollard's Kangaroo (Lambda).

Birthday Attack on Discrete Log: Pollard's Rho

Problem

• Solve $h = g^x$ in group of order $N = |\langle g \rangle|$

Birthday

• Heuristic: Average $\sqrt{\frac{\pi}{2}}N$ random values until "collision" of a walk.

- Choose "random" $(a_0, b_0), (a_1, b_1), ...$
- Then $g^{a_i}h^{b_i}\equiv g^{a_j}h^{b_j}$ in $\sqrt{\frac{\pi}{2}|G|}$ steps
- Algorithm $\bullet \to g^{a_i + b_i x} \equiv g^{a_j + b_j x}$
 - $\bullet \to x \equiv (a_i a_i) (b_i b_i)^{-1}$

Pollard's Rho

Pollard's Rho - parallel

Collision Attack on Discrete Log: Pollard's Kangaroo

Problem

• DLog: Solve $h \equiv g^x$ With condition: if we know that $x \in \{a, a+1, ..., b\}$. Can we do better than $\sqrt{\frac{\pi}{2}|G|}$?

Kruskal / Kangaroo Kruskal Count: Collision of two monotone walks in

$$(catch\ up\ time) + m$$

Algorithm:

-- Start tame kangaroo @ $g^{(a+b)/2}$.

-- Hop some # of steps. Keep track of exponent.

-- Place trap: Location @ $g^{\frac{a+b}{2}+\alpha}$.

-- Run wild until $g^{x+\beta} = g^{\frac{a+b}{2}+\alpha}$

 $\rightarrow x \equiv \frac{a+b}{2} + \alpha - \beta$

Complexity?

Algorithm

Pollard's Kangaroo

 $r \sim 0.5 \log_2 N$ step types $m \sim 0.5 N^{0.5}$ step size

Deterministic?

Gaudry-Schost

Deterministic?

Birthday Attack on Discrete Log: Pollard's Rho

Problem

• Solve $h = g^x$ in group of order $N = |\langle g \rangle|$

Birthday

- Average $\sqrt{\frac{\pi}{2}}N$ random values until birthday "collision."
- "Random" walk X_0, X_1, \dots
- $X_{i+1} = F(X_i)$ with F(X)
- Proceed until "collision" $X_i = X_i$.

Algorithm

- Note: F is deterministic pseudo-random.
- Note: F is low degree (Pollard: r=3, Teske: r=20).

Birthday Heuristic for Rho

- \square Heuristic: Almost all X_i and X_j are "independent."
- $\square \rightarrow$ a.e. collision involves "independent" states.
- So performs like a birthday problem.
- □ Birthday: Run time $\approx 1.253\sqrt{N}$
- \square Simulations: As bad as $1.625\sqrt{N}$

Birthday Heuristic for Rho

□ <u>Problem</u>: Low degree dependencies $X_{i+1} = F(X_i)$ with F(X) of degree r.

□ Teske:

$$F(X) = X * g^{a_i}h^{b_i} \quad with \ i \in_{uar} \{1, 2, \dots, r\}$$

Results for Pollard's Rho (N=|G|)

- □ Birthday heuristic: $\sqrt{\frac{\pi}{2}N} \approx 1.253\sqrt{N}$
- "Rigorous" results: Pollard's walk
 - Miller and Venkatesan: $O(\sqrt{N}(\log N)^3)$
 - \blacksquare Kim, Montenegro, Peres, Tetali: $\le 52.5\sqrt{N}$
- Heuristic results: Teske's walk
 - Blackburn and Murphy (also Brent and Pollard; Bailey et.al.)

Bernstein and Lange

$$\sqrt{\frac{\pi}{2}} \frac{N}{1 - 1/r}$$

$$\sqrt{\frac{\pi}{2} \frac{N}{1 - \frac{1}{r} - \frac{1}{r^2} - \frac{2}{r^3} - \cdots}}$$

Birthday Heuristic

 \square State X_i is "independent" of most prior states.

-- if
$$|i-j| \ge \tau$$
 then $P(X_i = X_j) \approx \frac{1}{N}$

$$\square P(X_i = some \ prior \ X_j) \approx \frac{i-\tau}{N}$$

□ Collision in: $\sqrt{\frac{\pi}{2}N} \approx 1.253\sqrt{N}$

Our approach

"Independent" blocks

Rare collisions

- □ Fix a value k.
- □ If $T = o(\sqrt{N})$ then prob. 0 first collision has |i j| < T with $X_i = X_j$ \rightarrow prob. 0 of collision in $\{X_k, X_{k+1}, \cdots, X_{k+T}\}$
- □ If $T = o(\sqrt{N})$ then prob. 0 first collision involves a state in $\{X_k, X_{k+1}, \cdots, X_{k+T}\}$
- Conclusion:
 - -- Can ignore some $o(\sqrt{N})$ states completely.
 - -- Can ignore potential collisions closer than $o(\sqrt{N})$.

Our Method: Step 1

□ Break walk into blocks with $T=o(\sqrt{N})$ $\{X_0,X_1,\cdots,X_{T-1}\}$ $\{X_T,X_{T+1},\cdots,X_{2T-1}\}$ \cdots $\{X_{kT},X_{kT+1},\cdots,X_{(k+1)T-1}\}$

Ignore potential collisions within a block.

Our Method: Step 2

Randomize between blocks: $T=o(\sqrt{N})$, $\tau=o(T)$ $\{X_{\tau},X_1,\cdots,X_{T-1}\}$ $\{X_{T+\tau},X_{T+\tau+1},\cdots,X_{2T-1}\}$ \cdots $\{X_{kT+\tau},X_{kT+\tau+1},\cdots,X_{(k+1)T-1}\}$

Ignore potential collisions within a block.
 Ignore "randomization" states between blocks.

Our approach

"Independent" blocks

"Rigorous" Analysis

Block

$$B_k = \left\{X_{kT+\tau}, X_{kT+\tau+1}, \cdots, X_{(k+1)T-1}\right\}$$
 is "independent" of all prior blocks.

- □ If j < k then $P(B_k \cap B_i \neq \emptyset) = p$ (p=TBD).
- $P(\exists j < k : B_k \cap B_i \neq \emptyset) = kp$
- □ Collision in $\sqrt{\frac{\pi}{2}} \frac{1}{p}$ blocks.
 □ Collision in $\sqrt{\frac{\pi}{2}} \frac{1}{p} T$ steps.

"Rigorous" Analysis: Part 2

$$\square$$
 If $B_k \cap B_i \neq \emptyset$

$$\Box P(B_k \cap B_j \neq \emptyset) = \frac{E[|B_k \cap B_j|]}{E[|B_k \cap B_j|:|B_k \cap B_j|>0]}$$

$$= \frac{(T-\tau)^2 \frac{1}{N}}{C_\tau} = p$$

where $C_{\tau} = E[\#collisions\ in\ \tau\ steps\ when\ X_0 = Y_0]$

"Rigorous" Analysis: Conclusion

Collision in

$$\sqrt{\frac{\pi}{2} \frac{N}{(T-\tau)^2/C_{\tau}}} T = \sqrt{\frac{\pi}{2} N C_{\tau}}$$

 \square Pollard's walk: $C_{\tau} = 1.68221$

□ Teske's walks: $C_{\tau} = \frac{1}{1 - \frac{1}{r} - \frac{1}{r^2} - \frac{2}{r^3} - \cdots}$ if $N \ge 6$

Rho: r=3 Pollard vs r=3 Teske

□ Pollard:

Additive:

Pollard's Rho: Simulations

Group size n for Pollards Rho

Pollard's Rho: Our heuristic

Pollard's Rho - parallel

Parallel Rho: Analysis

If M processors then collision in

$$\sqrt{\frac{\pi}{2}} \frac{N}{(T-\tau)^2/C_{\tau}} \frac{T}{M} = M^{-1} \sqrt{\frac{\pi}{2} N C_{\tau}}$$

Pollard's Kangaroo

 $r \sim 0.5 \log_2 N$ step types $m \sim 0.5 N^{0.5}$ step size

Pollard's Kangaroo

$$\square \text{ Run time } \left(2 + \frac{2}{\log_2 N} + \frac{14}{(\log_2 N)^2} + \cdots\right) \sqrt{N}$$

The average number of steps to catch wild kangaroo

Gaudry-Schost

Gaudry-Schost

- □ Galbraith, Pollard, Ruprai: 1-d, 3 or 4 walkers. "Improved 3 set" version: Heuristic time $1.761\sqrt{N}$.
- □ Simulations suggest $1.795\sqrt{N}$ Interval: $(1.790,1.799)\sqrt{N}$
- □ Our improvement: $1.761\sqrt{\frac{N}{1-\frac{1}{r}-\frac{1}{r^2}-\dots}} = 1.790\sqrt{N}$.
- Error: Boundary effects?

Summary

- □ Given heuristic for collision of walk(s).
- Break walk(s) into independent blocks.
- Ignore rare collisions involving:
 - -- block with itself
 - -- mixing states between blocks
- □ Heuristic (usually) becomes rigorous, with correction $C_{\tau} = E[\#collisions\ in\ \tau\ steps\ when\ X_0 = Y_0]$